National Technical University of Athens
School of Mechanical Engineering
Nuclear Engineering Department

NRE VI, International Symposium, June 5-9, 1995, Montreal, ENVIRONMENT INTERNATIONAL, Vol. 22, Suppl. 1, pp. S369-S373,1996


N.P. Petropoulos, E.P. Hinis and S.E.Simopoulos
Nuclear Engineering Section
Mechanical Engineering Department
National Technical University of Athens

Right after the Chernobyl reactor accident a systematic soil sampling and analysis programme has been undertaken by the Nuclear Engineering Section of the National Technical University of Athens in order to detect and quantitatively analyse the long-lived isotopes in the Chernobyl fallout in Greece. In the frame of this programme, 1242 soil samples of 1cm thick surface soil were collected over Greece during the period May - November 1986. The samples were counted and analysed using Ge-detector setups for fission products from the Chernobyl fallout, which led to the mapping of Cs-137 deposition in the form of a five-class histogram, extending between 0 - 150 kBq/m², with boundaries defined by isolines of 5, 15, 35, 65 & 150 kBq/m². To investigate the radiological impact of the Cs-137 fallout on the Greek population, the NEA/OECD computer code PABLM was run using as input the above isoline data. According to the results obtained, the total body collective effective dose commitment of the Greek population is estimated to 340 manSv over the first year after the accident and 8800 manSv over a period of 40 years. Concerning the 6000 inhabitants within the 65 kBq/m² isoline the results are 2 manSv over the first year after the accident and 55 manSv over a period of 40 years. The above radiological impact was further compared to that due to fly ash releases from the Ptolemais Lignite Power Plants, in northern Greece.

Previous Next