NATURAL RADIOACTIVITY CONTENT
AND RADON EXHALATION RATE
MEASUREMENTS OF ZEOLITES
FOR Project ZEOGYP-BOARD

D. J. Karangelos, N.P. Petropoulos,
M.J. Anagnostakis, E.P. Hinis
and S.E. Simopoulos

Nuclear Engineering Department,
School of Mechanical Engineering,
National Technical University of Athens,
15780 Athens, Greece, npetro@nuclear.ntua.gr
RESEARCH ACTIVITIES ON NATURAL RADIOACTIVITY (I)

Gamma spectroscopic determination of natural radionuclides (^{238}U, ^{226}Ra, ^{210}Pb, ^{232}Th, ^{40}K etc) in:

- Soil (more than 2000 surface soil samples have been collected and analysed over Greece and Yugoslavia - Kosovo).
- Lignites and ashes produced in Lignite-fired Power Plants (more than 500 samples).
- Building materials (more than 200 samples).
- Foodstuff.
RESEARCH ACTIVITIES ON NATURAL RADIOACTIVITY (II)

1. Radon (^{222}Rn) exhalation measurements from:
 - raw building materials
 - building structures
2. Radon barrier materials testing.
3. Thoron (^{220}Rn) exhalation rate determination from building materials (under development).
4. Radon concentration measurement instruments calibration.
GAMMA SPECTROSCOPY LAB
SAMPLE PREPARATION
SAMPLE MEASUREMENT IN XtRa Ge DETECTOR
Spectrum: FM331B
Collect time: 171947 s
Detector: LeGe
ZEOLITE NATURAL RADIOACTIVITY CONTENT RESULTS (I)

<table>
<thead>
<tr>
<th>Sample Code</th>
<th>226Ra (Bq kg$^{-1}$)</th>
<th>232Th (Bq kg$^{-1}$)</th>
<th>40K (Bq kg$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SKL-1</td>
<td>40 ± 2</td>
<td>59 ± 3</td>
<td>918 ± 38</td>
</tr>
<tr>
<td>MET-1</td>
<td>80 ± 4</td>
<td>104 ± 5</td>
<td>944 ± 41</td>
</tr>
<tr>
<td>2P</td>
<td>121 ± 6</td>
<td>205 ± 10</td>
<td>2010 ± 80</td>
</tr>
<tr>
<td>3C</td>
<td>124 ± 6</td>
<td>195 ± 10</td>
<td>2500 ± 125</td>
</tr>
<tr>
<td>PEN-1</td>
<td>85 ± 4</td>
<td>122 ± 6</td>
<td>473 ± 19</td>
</tr>
<tr>
<td>Sample Code/Grain size (mm)</td>
<td>Radioactivity Content Bq kg⁻¹</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td>-----------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>^{226}Ra</td>
<td>^{232}Th</td>
<td>^{40}K</td>
</tr>
<tr>
<td>2P/0.9-1.2</td>
<td>122 ± 5</td>
<td>197 ± 8</td>
<td>2016 ± 84</td>
</tr>
<tr>
<td>PET-1/0.7-1.6</td>
<td>154 ± 6</td>
<td>108 ± 5</td>
<td>1117 ± 50</td>
</tr>
<tr>
<td>PET-1/0-0.2</td>
<td>160 ± 7</td>
<td>117 ± 5</td>
<td>1202 ± 52</td>
</tr>
</tbody>
</table>
RADON EXHALATION MEASUREMENT METHOD USED

✓ ENCLOSE THE SAMPLE IN A CONTAINER
 (RADON CHAMBER)

✓ FOLLOW UP THE RADON CONCENTRATION GROWTH INSIDE THE CONTAINER
THE NTUA RADON CHAMBERS

Designed and constructed in Greece by the NTUA Nuclear Engineering Laboratory

- Radon chamber 1.8 m³
- Radon chamber 8.5 m³

Made of stainless steel, Air-tight and Radon-tight

Computer controlled environmental conditions

(Temperature 12-45 °C,
Humidity 15 –95% non-condensing)
THE 8.5 m³ RADON CHAMBER

FRONT SIDE VIEW
LENGTH: 2.4m,
 WIDTH: 1.7m,
HEIGHT: 2.1m

DOOR:
1.1m HIGH,
0.6m WIDE
THE 1.8 m³ RADON CHAMBER USED FOR THIS PROJECT

FRONT
SIDE VIEW
LENGTH: 1.2m,
WIDTH: 1.0m,
HEIGHT: 1.5m
DOOR: 1.1m HIGH,
0.6m WIDE
QUASI-CONTINUOUS RADON CONCENTRATION MONITORING
MATHEMATICALLY EXPRESSED...

\[C = C_o \exp(-\lambda t) + E[1-\exp(-\lambda t)](\lambda V)^{-1} \] \(\text{(1)} \)

- \(C \) Radon concentration (Bqm\(^{-3}\)) in the container at growth time \(t(\text{h}) \)
- \(E \) exhalation rate (Bqh\(^{-1}\))
- \(\lambda \) Radon decay constant (h\(^{-1}\))
- \(C_o \) initial Radon concentration (Bqm\(^{-3}\)) in the container at time \(t(0\text{h}) \) – i.e. the background
THE EQUATION IS VALID IF... (I)

- There is **no leakage** of Radon out of the container.
- The activity concentration in the container air is low compared to the activity concentration in the pore air of the sample – i.e. no **back-diffusion** effects.
TYPICAL RADON EXHALATION CURVE

Typical Radon Exhalation Rate Plot (Sample 2P)
ZEOLITE RADON EXHALATION RATE RESULTS (ss=1)

<table>
<thead>
<tr>
<th>Sample Code/Grain size (mm)</th>
<th>Radon Exhalation Rate μBqkg$^{-1}$s$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2P/ 0.9-1.2</td>
<td>115 ± 20</td>
</tr>
<tr>
<td>PET-1/ 0.7-1.6</td>
<td>80 ± 3</td>
</tr>
<tr>
<td>PET-1/ 0-0.2</td>
<td>100 ± 8</td>
</tr>
</tbody>
</table>
SHORT DISCUSSION (I)

- The 226Ra content of the zeolites examined (40-160) lies within the 226Ra content range of European building materials, i.e. 4 - 4000 Bq kg$^{-1}$

- The Radon exhalation rate of the zeolites examined (80-115) lies within the range of Greek black cement or fly ashes, i.e. 10 – 110 µBq kg$^{-1}$s$^{-1}$ but it is much lower than that of internationally reported values
The ^{232}Th content of the zeolites examined lies within the ^{232}Th content range of European building materials, i.e. 0 - 540 Bq kg$^{-1}$.

The Thoron exhalation rate of the zeolites should be further measured, since the experiments already conducted showed measurable Thoron concentrations. (Thoron exhalation measurement methods are currently under development).
The 40K content of the zeolites examined lies within the 40K content range of European building materials, i.e. 25 - 2354 Bq kg$^{-1}$. The respective range for Greek building materials is 1 – 1158 Bq kg$^{-1}$.
SHORT DISCUSSION (IV)

Assuming the worst case scenario that boards are constructed exclusively of zeolites with the highest natural radionuclide concentrations measured, then such a building material would result to an “activity concentration index I” equal to:

\[
I = \frac{^{226}\text{Ra content}}{300} + \frac{^{232}\text{Th content}}{200} + \frac{^{40}\text{K content}}{3000} = 2.8
\]
If such a board is used in bulk amounts then it results to a dose higher than the dose criterion of 1mSva⁻¹.

If such a board is used superficially then it results to a dose lower than the dose criterion of 1mSva⁻¹.

The dose due to natural radioactivity from every source has been world-wide calculated to 2mSva⁻¹.
CONCLUSION

It is advisable to sample and measure radiologically important parameters in gypsum boards containing zeolite.