NATURAL RADIOACTIVITY CONTENT AND RADON EXHALATION RATE MEASUREMENTS OF ZEOLITES FOR Project ZEOGYP-BOARD

> D. J. Karangelos, <u>N.P. Petropoulos</u>, M.J. Anagnostakis, E.P. Hinis and S.E. Simopoulos

Nuclear Engineering Department, School of Mechanical Engineering, National Technical University of Athens, 15780 Athens, Greece, npetro@nuclear.ntua.gr

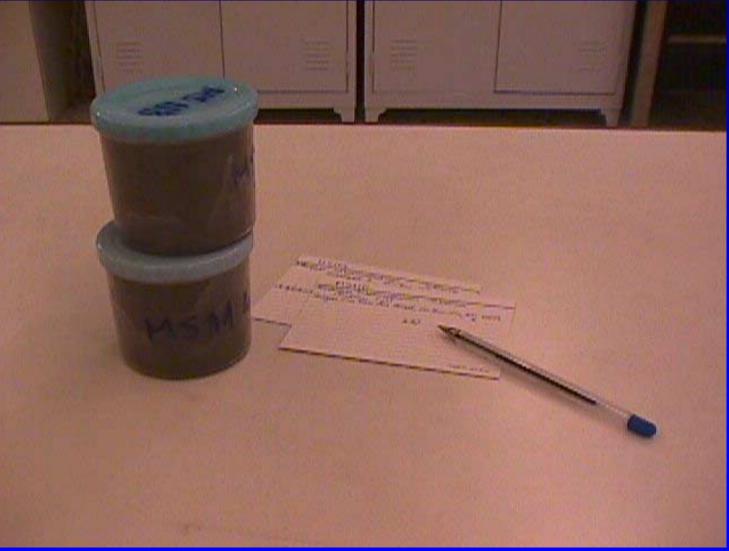
RESEARCH ACTIVITIES ON NATURAL RADIOACTIVITY (I)

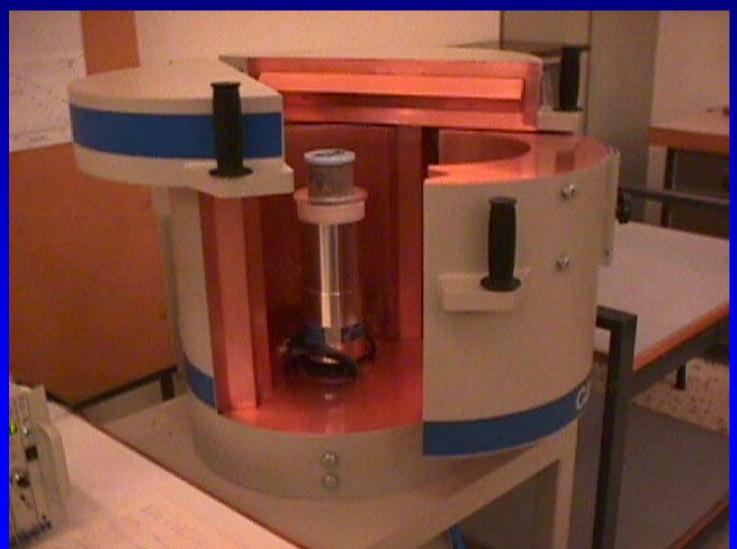
Gamma spectroscopic determination of natural radionuclides (²³⁸U, ²²⁶Ra, ²¹⁰Pb, ²³²Th, ⁴⁰K etc) in:

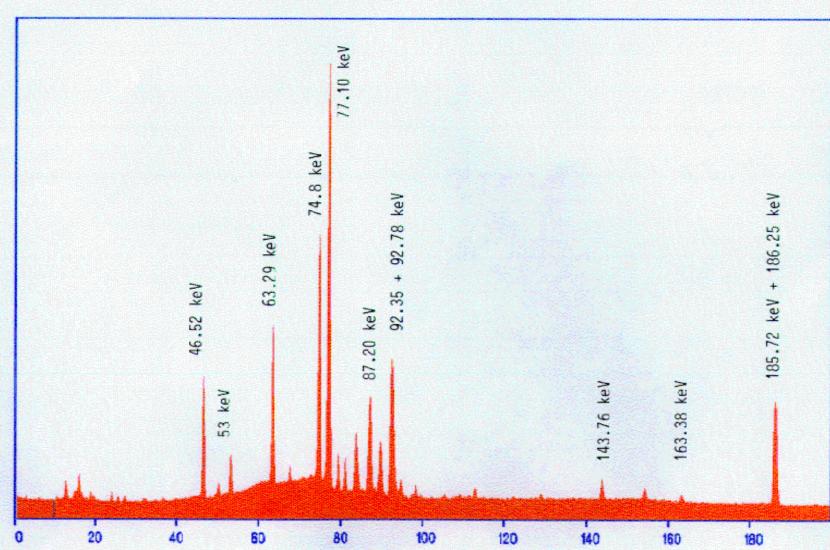
- Soil (more than 2000 surface soil samples have been collected and analysed over Greece and Yugoslavia Kossovo).
- Lignites and ashes produced in Lignite-fired Power Plants (more than 500 samples).
- Building materials (more than 200 samples).
- Foodstuff.

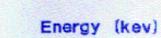
RESEARCH ACTIVITIES ON NATURAL RADIOACTIVITY (II)

1. Radon (²²²Rn) exhalation measurements from:


- raw building materials
- building structures
- 2. Radon barrier materials testing.
- 3. Thoron (²²⁰Rn) exhalation rate determination from building materials (under development).
- 4. Radon concentration measurement instruments calibration.




SAMPLE PREPARATION



SAMPLE MEASUREMENT IN XtRa Ge DETECTOR

Counts

Spectrum : FM331B

Collect time : 171947 s Detector : LeGe

ZEOLITE NATURAL RADIOACTIVITY CONTENT RESULTS (I)

	Radioactivity Content Bqkg ⁻¹		
Sample Code	²²⁶ Ra	²³² Th	⁴⁰ K
SKL-1	40 ± 2	59 ± 3	918 ± 38
MET-1	80 ± 4	104 ± 5	944 ± 41
2 P	121 ± 6	205 ± 10	2010 ± 80
3C	124 ± 6	195 ± 10	2500 ± 125
PEN-1	85 ± 4	122 ± 6	473 ± 19

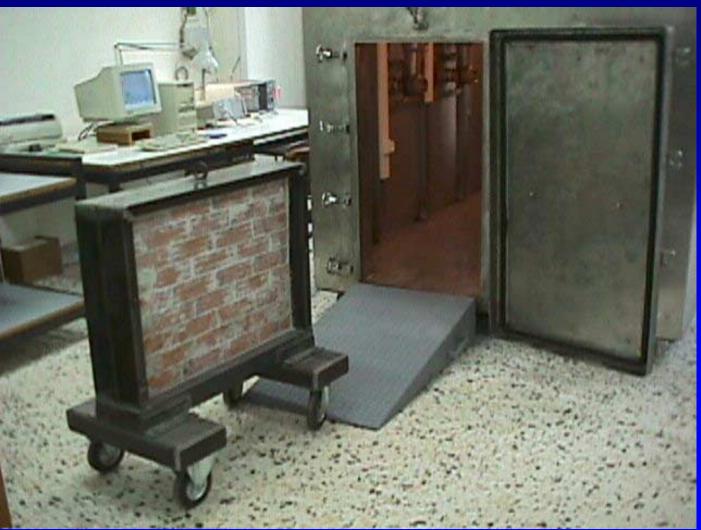
ZEOLITE NATURAL RADIOACTIVITY CONTENT RESULTS (II)

	Radioactivity Content Bqkg ⁻¹		
Sample Code/	²²⁶ Ra	²³² Th	⁴⁰ K
Grain size (mm)			
2P /	122 ± 5	197 ± 8	2016 ± 84
0.9-1.2			
PET-1 /	154 ± 6	108 ± 5	1117 ± 50
0.7-1.6			
PET-1 /	160 ± 7	117 ± 5	1202 ± 52
0-0.2			

RADON EXHALATION MEASUREMENT METHOD USED

✓ ENCLOSE THE SAMPLE IN A CONTAINER (RADON CHAMBER)

FOLLOW UP THE RADON CONCENTRATION GROWTH INSIDE THE CONTAINER


THE NTUA RADON CHAMBERS

 Designed and constructed in Greece by the NTUA Nuclear Engineering Laboratory
✓ Radon chamber 1.8 m³
✓ Radon chamber 8.5 m³

Made of stainless steel, Air-tight and Radon-tight Computer controlled environmental conditions (Temperature 12-45 °C, Humidity 15 –95% non-condensing)

THE 8.5 m³ RADON CHAMBER

FRONT SIDE VIEW LENGTH: 2.4m, **WIDTH: 1.7m**, **HEIGHT: 2.1m DOOR:** 1.1m HIGH, 0.6m WIDE

THE 1.8 m³ RADON CHAMBER USED FOR THIS PROJECT

FRONT **SIDE VIEW LENGTH:** 1.2m, WIDTH: 1.0m, **HEIGHT: 1.5**m **DOOR:** 1.1m HIGH, 0.6m WIDE

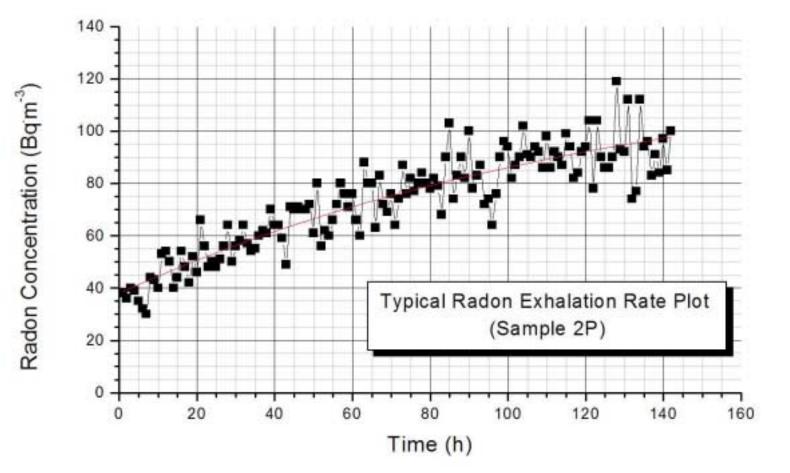
QUASI-CONTINUOUS RADON CONCENTRATION MONITORING

(WITTER)

MATHEMATICALLY EXPRESSED...

$\mathbf{C} = \mathbf{C}_{0} \exp(-\lambda t) + \mathbf{E} [1 - \exp(-\lambda t)] (\lambda \mathbf{V})^{-1} \quad (1)$

- *C* Radon concentration (Bqm⁻³) in the container at growth time t(h)
- E exhalation rate (Bqh⁻¹)
- λ Radon decay constant (h⁻¹)
- C_o initial Radon concentration (Bqm⁻³) in the container at time t(0h) i.e. the background


THE EQUATION IS VALID IF... (I)

• There is <u>no leakage</u> of Radon out of the container.

 The activity concentration in the container air is low compared to the activity concentration in the pore air of the sample – i.e. no <u>back-diffusion</u> effects.

Annual A

ZEOLITE RADON EXHALATION RATE RESULTS (ss=1)

Sample Code/	Radon Exhalation Rate
Grain size (mm)	µBqkg ⁻¹ s ⁻¹
2P /	
0.9-1.2	115 ± 20
PET-1 /	
0.7-1.6	80 ± 3
PET-1 /	
0-0.2	100 ± 8

SHORT DISCUSSION (I)

• The ²²⁶Ra content of the zeolites examined (40-160) lies within the ²²⁶Ra content range of European building materials, i.e. 4 - 4000 Bqkg⁻¹ • The Radon exhalation rate of the zeolites examined (80-115) lies within the range of Greek black cement or fly ashes, i.e. $10 - 110 \mu Bqkg^{-1}s^{-1}$ but it is much lower than that of internationally reported values

SHORT DISCUSSION (II)

• The ²³²Th content of the zeolites examined lies within the ²³²Th content range of European building materials, i.e. 0 - 540 Bqkg⁻¹ • The Thoron exhalation rate of the zeolites should be further measured, since the experiments already conducted showed measurable Thoron concentrations. (Thoron exhalation measurement methods are currently under development).

SHORT DISCUSSION (III)

The ⁴⁰K content of the zeolites examined lies within the ⁴⁰K content range of European building materials, i.e. 25 - 2354 Bqkg⁻¹. The respective range for Greek building materials is 1 - 1158 Bqkg⁻¹.

SHORT DISCUSSION (IV)

Assuming the worst case scenario that boards are constructed exclusively of zeolites with the highest natural radionuclide concentrations measured, then such a building material would result to an "activity concentration index I" equal to: $I = {}^{226}Ra \text{ content}/300 + {}^{232}Th \text{ content}/200$ $+^{40}$ Kcontent/3000 = 2.8

SHORT DISCUSSION (V) "EC Radiation Protection 112 Doc" If such a board is used in bulk amounts then it results to a dose higher than the dose criterion of 1mSva⁻¹

• If such a board is used superficially then it results to a dose lower than the dose criterion of $1mSva^{-1}$

• The dose due to natural radioactivity from every source has been world-wide calculated to 2mSva⁻¹

CONCLUSION

It is advisable to sample and measure radiologically important parameters in gypsum boards containing zeolite.